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A comprehensive numerical study was made of the transient natural convection in a square 
cavity at large Rayleigh numbers. The f low was initiated by instantaneously raising and 
lowering the temperatures on the opposing sidewalls. Extensive and systematic numerical 
solutions to the two-dimensional, time-dependent Navier-Stokes equations were carried 
out. The main thrust was to examine the effect of the Prandtl number and of the thermal 
conditions on the horizontal surfaces. Attention was focused on the time histories of 
temperature and velocity. The time dependence of the Nusselt number was also determined. 
When Pr> 1, a distinct oscillatory behavior is oberved if the criterion Ra > Pr4A-4 is strongly 
satisfied, where A [ =  1.0-I is the cavity aspect ratio. The computed period of oscillation 
is compatible with the period for internal gravity waves, lending support to the predictions 
of Patterson and Imberger. The influence of the thermal boundary conditions on the 
horizontal surfaces appears to have a negligible influence on the time histories. 
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Introduction 

The flow and heat transfer characteristics of buoyancy-driven 
fluid motions inside a closed cavity have received considerable 
attention (see, e.g., the review article by Ostrach~). In addition 
to such well-known areas of application in thermal engineering, 
the subject matter is increasingly relevant to modern techno- 
logical innovations (e.g., crystal growth and materials processing 
in space, etc.). As is the case for the majority of these 
applications, attention will be given primarily to situations 
in which the system Rayleigh number Ra is sufficiently large so 
that convection is predominant. Also, attention is limited to 
enclosures with an aspect ratio of the order of unity. 

In an effort to isolate and clearly identify the main physics 
involved, the flow inside a rectangular cavity with differentially 
heated vertical sidewalls has previously been investigated exten- 
sively. These studies have mostly dealt with the steady-state 
regime. Despite the practical importance of time-dependent 
convective situations in nature as well as in engineering, 
published accounts of unsteady cavity convection have been 
relatively scarce. 2-7 

The recent paper, Ref. 2, improved our understanding of 
transient behavior of natural convection in a two-dimensional 
rectangular cavity. Their analysis centered on the flow of an 
initially isothermal fluid (0=0o) driven by abruptly raising 
(0h=00+A0/2) and lowering (0o=00-A0/2)  the respective 
vertical sidewall temperatures of the rectangle. Relying heavily 
on scaling arguments and physical insights, Patterson and 
Imberger provided broad classifications of the transient regimes 
of flow in terms of several nondimensional parameters. A key 
contention which emerged from their analysis was the existence 
of a decaying oscillatory approach to steady state; they stated 
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that this behavior reflected the result of transient system-scale 
internal wave activity. It was shown that the criterion for such 
oscillatory behavior was Ra > Pr4A-4, where Pr is the Prandtl 
number and A the aspect ratio (height/width). Patterson and 
Imberger presented a few illustrative numerical solutions for a 
square cavity (A=I ) ,  and their results were shown to be 
compatible with their theoretical expositions. 

The presence of the internal waves in transient cavity 
convection has been a topic of intense discussion in the recent 
literature. Prior work has been reported on the closely related 
problem of heat-up (or heat-down); this refers to the transient 
process of fluid adjustment from a given state of stratification 
to a new state of stratification due to the alteration in thermal 
boundary condition on the walls of the entire enclosure. For  this 
type of process in a cylinder, the overall approach to the steady 
state is accomplished over a time scale Ra~/4N~ 1, where N d is 
the dimensional Brunt-Vaisala frequency of the new state of 
stratification. 8-~ 2 Numerical solutions to the full Navier-Stokes 
equations for a cylindrical container of aspect ratio of order 
unity revealed that the velocity field evolved in a highly 
oscillatory fashion, the frequency being scaled with Nd. 1°-13 
The laboratory experiment on cool down in a cylinder of aspect 
ratio of order unity by Otis and Roesler 14 also displayed wave 
motions, and the observed frequency was closed to the buoyant 
frequency N d of the system. 

The issue of the internal gravity waves does not appear to 
have been completely resolved for the pattern offlow envisioned 
by Ref. 2. Laboratory measurements employing shallow cavities 
(A = 0.0625, 0.0112) showed no evidence of waves, pointing to 
an apparent discrepancy between theory and experiment. 6 
Later, Patterson t5 proposed more detailed orderings for the 
classification of the flow, and asserted that the experiments by 
Ref. 6 were actually performed in a regime in which internal 
wave activity would not be expected. Ivey 3 conducted similar 
experiments in a square cavity (A= 1) at Rayleigh numbers 
(~  109), which were much higher than the values ( ~  105) used 
in the numerical computations of Ref. 2. Ivey's experiments 
detected oscillation in temperature in the corners of the cavity, 
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but Ivey attributed this phenomenon to an internal hydraulic 
jump. 

Stimulated by the aforementioned recent interest in transient 
convection in a cavity, one powerful approach appears to be 
more comprehensive and explicit numerical solutions. The 
exemplary numerical results of Ref. 2 corroborated the qualitative 
global features obtainable from their scale analyses; however, 
further systematic and extensive numerical runs are needed to 
verify the details of the theory. Such specific and illustrative 
numerical results might clarify the nature of the transient 
oscillatory behavior predicted by Ref. 2. 

Numerical solutions have been secured for the time-dependent 
two-dimensional Navier-Stokes equations for A = 1. A broad 
range of the parametric values was encompassed such that the 
criterion proposed by Ref. 2 for the wave activity could be 
tested. Since the aspect ratio was set to be unity, the principal 
thrust of the study was to ascertain the effect of the Prandtl 
number on the transient process. Numerical solutions using 
extreme values of Pr and P r~  O(1) have been carried out. The 
time evolving structures of flow and thermal fields were 
scrutinized, and the heat transfer rate on the boundary was 
computed. The calculations covered a range of Pr = 0.025-100, 
Ra = 104-107. 

Another motivation for this paper is to investigate the effect 
of the thermal conditions at the horizontal boundaries. For the 
geometries considered by Refs. 2, 3, and 6, the upper and lower 
horizontal walls were thermally insulated. Prior work on the 
natural convection in a cavity with destabilizing, thermally 
conducting horizontal surfaces has not been numerous. Of more 
practical importance is a linear variation in temperature on the 
horizontal walls. These conditions on the horizontal wall were 
considered in the transient analysis by Hyun and Lee 7 for a 
fluid with temperature-dependent viscosity. Briggs and Jones 16 
studied steady-state natural convection experimentally at high 
Rayleigh numbers in a square cavity equipped with such 
horizontal walls. The numerical solutions to the two-dimensional 
transient Navier-Stokes equations incorporating the linearly 
varying horizontal temperature conditions were obtained in the 
present paper. This problem was first addressed in the classical 
paper by Ref. 5; because of the limited computing power at 
that time, the parameter space considered in that paper was 
rather restricted. The aim here was to calculate the time- 
dependent flow in an extended parameter space, and compare 
the results with those obtained for insulating horizontal surfaces. 
Descriptions are presented of the numerically constructed 

evolution of flow in the cavity. These numerical results serve as 
background flow data to illuminate the specific influence of the 
thermal condition at the horizontal surfaces on the interior 
fluid motion. 

In summary, as a sequel to Ref. 7, this paper has the objective 
of depicting the highlights of time histories based on the 
numerical solutions. The information presented in the present 
paper may be used as standards against which future laboratory 
measurements can be compared. 

The model 

The transient two-dimensional fluid motions under present 
consideration are governed by the Navier-Stokes equations 
with the Boussinesq assumption. In the usual vorticity (O- 
stream function (~b) formulation, and expressed in dimensionless 
form, these are 

dU OV 
- - + - - = 0  (1) 
dX OY 

dT u dT+__ OT ~2T d2T 
F V - - -  ~ (2) 

Oz OX OY OX 2 OY 2 

O(+UO(+VO( Pr [-02( 02(-] R P 0T 
~-X ~ =  L ~ 5 + ~ J +  a r ~  (3) 

U $  020 
OX 2 ~-~y2 = - (  (4) 

u= °--~y, v= o0 
-aT (5) 

In the above, the nondimensional quantities are defined as 

X V U /) 
V = - -  X=g,  Y= , U=~h , x/h 

0-0o t v 

T=Oh_Oc, Z = h ~ '  Pr=-K 

R a -  98 AOh3 
KY 

Figure 1 is the schematic of the configuration. The square 
cavity is of width and height h, and the Cartesian coordinates 

Notation 

A 
Cp 
h 
k 
N 
Nd 
Nu 
Pr 
Ra 
t 

T 
U,/ )  

U,V 
x, y 
X , Y  

Aspect ratio, height/width 
Specfic heat 
Height of cavity 
Thermal conductivity 
Nondimensional Brunt-Vaisala frequency 
Dimensional Brunt-Vaisala frequency 
Average Nusselt number over boundary 
Prandtl number, v/x 
Rayleigh number, gfl AOh3/Kv 
Time 
Nondimensional temperature 
Velocity components 
Nondimensional components of velocity 
Coordinates 
Nondimensional coordinates 
Coefficient of volumetric expansion with temperature 

( 
0 
K 

V 

P 
"t 

~o 

0 

Nondimensional vorticity 
Dimensional temperature 
Thermal diffusivity, k/pCp 
Kinematic viscosity 
Density 
Nondimensional time 
Nondimensional time-scale for heatup, Ra-1/4 
Nondimensional period of oscillation for internal 
gravity waves, obtainable from 27r(1 + A2)l/2/N 
Nondimensional period of oscillation observed in the 
numerical solutions 
Nondimensional stream function 

Subscripts 
0 Reference value 
c Cold wall 
h Hot wall 

Int. J. Heat and Fluid Flow, Vol. 10, No. 2, June 1989 147 



Numer~al solu~ons ~r transient natural convect~n: J. M. Hyun and J. 

y,v 
adiabat ic or 

~highly conductin 9 

Figure I 

O c  Ig 
> 

ad  a b a t i c  or" 

h i gh  ] y c o n d u c t  i ng  

Conf igura t ion  and coordinate system 

Oh 

X,U 

0.00. 

U* 
-0.05 

-0.10 

-0.15 I I = 
0.0 1.0 2.0 ~* 3.0 

Figure2 Plots of hor izontal  veloci ty  U* (=uRa-'J=h/x) versus 
scaled time T* ( =  Ra'/4r) at X = 0 . 5 ,  Y=0 .8 :  - -  (31 x 3 1 )  mesh 
points; . . . . . .  (41 x 41 ) mesh points; . . . .  (51 x 51 ) mesh 
points. Conditions are R a = l O  6, P r = l .  Adiabatic horizontal  wal l  
conditions 

(x, y) with the corresponding velocity components (u, v) are 
indicated therein. The relevant fluid properties are v, the 
kinematic viscosity, x, the thermal diffusivity, and /3, the 
coefficient of volumetric expansion with temperature. In line 
with the customary practice, the fluid properties are taken to 
be constant, and dissipation is neglected in the energy equation. 
The principal nondimensional parameters are the Prandtl 
number Pr and the Rayleigh number Ra. 

The appropriate boundary conditions are 

u = v = 0 on all solid boundaries 
T = - 0 . 5  on X = 0 ,  T=0.5 on X = I  
OT/OY=O on Y=0, 1 (adiabatic horizontal walls) 
T= X - 0 . 5  on Y= 0, 1 (conducting horizontal walls) 

Numerical techniques to solve the above equations have been 
well established. We have chosen an amended version of 
finite-difference methods developed by Ref. 4. Sensitivity tests 
to grid size for this particular algorithm were previously 
carried out in detail by Ref. 4. In order to check the possibility 
that the oscillatory behavior may be significantly influenced by 
the choice of grid size, similar tests for the present numerical 
solutions were performed. A representative result of such tests 
is displayed in Figure 2. The velocity traces indicate that 
numerical solutions are insensitive to the grid size. Based on 
these tests, the mesh points employed in this paper were 

W. Lee 

typically (31x31). The reader is referred to Ref. 4 for the 
specifics of the numerical model. 

Resul ts  and  d iscuss ion  

The first series of computations is for the case of insulated 
horizontal surfaces. Previous studies have clearly established 
the general pattern of flow; therefore, the impetus of the present 
investigation will be directed toward the time histories of the 
interior flow and temperature fields as well as the rate of heat 
transfer on the cavity walls. Time records are essential to 
estimate the time scale for global adjustment and to detect the 
existence of an oscillatory approach to the steady state. 

Guided by the previous analyses of Ref. 2 and others, the 
transient results for the flow regimes Pr > I are first described. 

Figure 3 illustrates the evolution of temperature and velocity 
at several selected points for Ra = 106, Pr = 100. Note that this 
case belongs to the regime Ra < Pr4A- 4, as classified by Ref. 2. 
When the horizontal surfaces are insulated, the overall flow 
structure is antisymmetric about the diagonal line of the cavity; 
therefore, Figure 3 presents the transient records at the points 
located in the upper region and in the right region (close to 
the hot wall). It is immediately evident in the temperature traces 
of Figure 3 that no oscillatory behavior occurs. This qualitative 
feature is consistent with the predictions of Ref. 2. Inspection 
of the results in Figure 3 clearly suggests that the global 
process of adjustment is substantially accomplished over a time 
scale Zh, which scales with O(Ra-1/4). The observation that 
% ~ O(Ra-1/4) is in agreement with the theoretical findings for 
the heat-up process (see Refs. 8-12). The velocity traces are 
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Figure 3 (A) Plots of nondimensional temperature Tversus scaled 
time 3" at (a) X = 0 . 5 :  - -  Y = 0 . 8 3 3 ;  . . . . . .  Y = 0 . 7 0 0 ;  
. . . . .  Y=0 .567 .  (b) Y=0.5 :  X = 0 . 8 3 3 ;  . . . . . .  X = 0 . 7 0 0 ;  
- - .  • X = 0 . 5 6 7 ;  (B) plots of horizontal ve loci tyU*  versus scaled 
t ime T* (shown in (a))  and vertical ve loc i ty  V* versus scaled t ime r *  
( shown in (b)) .  The hor izontal  position is at X=O.5 :  - -  
Y=0 .833 ;  . . . . . .  Y=0 .700 ;  . . . . .  Y=0 .567 .  Condi t ions are 
Ra = 10 s, Pr = 100. Adiabatic horizontal wall conditions 
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Figure 4 Same as in Figure 3. Condit ions are Ra=106, P r = l .  
Adiaba t ic  horizontal wall condit ions 

equally smooth, and no oscillatory behavior is noticed at this 
value of Pr, which is in accord with the results of Hyun 17 for 
heat-up. The characteristics of flow and temperature shown in 
Figure 3 exemplify the regime R a <  Pr4A -4. 

Figure 4 is for Ra = 10 6, Pr = 1, which belongs to the regime 
Ra > praA-4.  The transient flow is highly oscillatory at small 
and intermediate times. Only near the steady-state limit, the 
oscillations are damped out. A closer inspection of the time 
records indicates that the period of oscillation z o is 0.010, and 
the oscillation survives for several periods. According to Ref. 2, 
the period of the systemwide internal gravity waves was scaled 
with "c~; i.e., 

zg = 2zt(1 + A2)I/2/N (6) 

where N = (Ra Pr)l/2 is the Brunt-Vaisala frequency nondimen- 
sionalized by use of K/h 2. For the run of Figure 4, zg=0.0089; 
the close agreement between the observed z o and the predicted 
rg lends support to the theory of Ref. 2. As mentioned before, 
the global adjustment is attained over the time scale Zh~ 
O(Ra- 1/4). Several more runs were made for Ra = 106 and using 
values of Pr larger than 1 but still satisfying R a >  Pr4A -4. For  
instance, for Ra--  106 and Pr = 2, a distinct transient oscillatory 
activity, with period z o = 0.0076 was seen. The value of Zg from 
Equation 6 for this case was 0.0063. 

Figure 5 shows two runs for Ra = 105 and for two different 
Prandtl numbers; i.e, (A) P r =  1 and (B) P r =  10. The criterion 
Ra >pr4A -a  is still satisfied. Oscillatory behavior is less 
pronounced in Figure 5(A) than in Figure 4. Note that the 
criterion Ra>Pr4A -4 is less strongly satisfied for the case 
shown in Figure 5(A) than that in Figure 4. The oscillatory 
period z o assessed from Figure 5(A) is 0.030~).034, while zg 
from (Equation 6) is 0.028. Figure 5(B) demonstrates the results 
of a marginal case (i.e., Ra P r - 4 A -  4= 10), which indicates that 
the product of the parameters does not greatly exceed the critical 
value of unity. The traces of temperature and horizontal velocity 
exhibit no evidence of oscillatory motion. This run was designed 
to validate the experimental measurements of Ref. 3 for which 

Ra P r -4A4=  8.6. The present results shown in Figure 5(B) are 
in qualitative consistency with the measurements of Ref. 3. 

The data displayed in Figures 4 and 5 point to the observation 
that, when the value of Ra exceeds well above pr4A -4, a distinct 
transient oscillatory behavior is discernible. The period of these 
oscillations is comparable to the period of internal gravity waves 
given by Equation 6. These findings based on the numerical 
results are clearly corroborative of the theoretical predictions 
by Ref. 2. 

Attention is now turned to Pr < 1. The majority of the prior 
work was undertaken for Pr > 1, but Hyun 17 examined the effect 
of Pr < 1 in the context of heat-up process in a cylinder. 

Figure 6 illustrates two runs for Pr < 1. Note that the criterion 
Ra > Pr4A-4 is trivially satisfied for P r <  1. Distinct transient 
oscillations are apparent in Figure 6(A) for R a =  10 6 and 
Pr=0.2.  The period of oscillation detectable in Figure 6(A) is 
z o = 0.0184).022, while zg from Equation 6 is 0.020. Figure 6(B) 
shows the result for Ra=104, Pr=0.1.  The criterion R a >  
pr4A -4 is still satisfied; however the value of Ra is relatively 
small so that only weak internal wave motions would be 
expected. The flow evolves mostly in a monotonic manner. 

The second phase of computations was conducted by adopting 
conducting horizontal surfaces having a linearly varying tem- 
perature profile. Figure 7 displays the time record for two runs; 
i.e., one run (shown in (A)) for Ra = 106, Pr = 1, and the other 
run (shown in (B)), for R a =  l0 s, P r =  10. As far as the time 
histories are concerned, the overall patterns of evolution for 
the conducting horizontal walls, as captured in Figure 7, are 
qualitatively similar to those for the adiabatic horizontal walls, 
as previously shown in Figures 4 and 5. One significant 
difference is the period of oscillation. Inspection of large 
amounts of numerical data leads to the conclusion that the 
period of oscillation for the conducting walls is greater than 
that for the insulating walls. For  instance, for Ra = 106, Pr = 1 
and 2, the periods of oscillation are 0.012 and 0.0088, respectively. 
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Figure 5 Plots of nondimensional temperature Tversus scaled time 
z* (shown in (a)) and horizontal velocity U* versus scaled time T* 
(shown in (b)). The horizontal position is at X=O.5: - -  
Y=0.833;  . . . . . .  Y=O.700; . . . . .  Y=0.567.  Condit ions are 
( A )  Ra = 1 0  B, P r =  1, ( B )  Ra = 1 0  s, P r =  10.  Ad iaba t ic  hor izonta l  wal l  
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These values are greater than 0.010 and 0.0076, as previously 
stated, for the insulating walls. The conducting walls permit 
heat exchange between the fluid and the bounding surfaces; 
therefore, the fluid stratification is, in general, weaker for 
conducting walls than for adiabatic walls. Also, for comparison 
purposes, the time histories records at a higher Rayleigh 

number, R a =  107 and P r =  1, for the two horizontal wall 
conditions are presented in Figure 8. Highly oscillatory tem- 
perature and flow fields are noticeable. The periods of oscillation 
are z 0 =0.0039 for conducting horizontal walls and % =0.0034 
for insulating horizontal walls, while zg from Equation 6 is 
0.0028. 
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Figure 8 Same as in Figure 5. Conditions are Ra = 107, Pr = 1 : (A) 
Adiabatic horizontal wall condit ions and (B) conducting horizontal 
wall conditions 
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Figure 9 Plots of the mean Nusselt number Nu versus scaled time 
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Table I Average steady-state Nusselt numbers based on the 
numerical solutions 

Ra Pr Nu Ra Pr Nu 

10' 0.1 2.048 105 100. 4.929 
104 1. 2.316 2 x 105 0.2 5.035 
104 10. 2.350 106 0.025 5.442 
104 100. 2.352 10 s 0.05 6.180 
10 s 0.025 3.045 10 s 0.1 6.914 
105 0.05 3.428 106 0.2 7.599 
105 0.1 3.811 106 1. 8.750 
10 ~ 0.2 4.159 106 2. 8.967 
105 1. 4.731 106 10. 9.087 
105 10. 4.921 10 e 100. 9.095 

One quanti ty of central importance to industrial applications 
is the total rate of heat transfer across the cavity. This is best 
represented by the Nusselt number defined at the sidewall as 

Figure 9 is representative of the qualitative nature of the 
evolution of Nu. The general trend of the t ime-dependent Nu,  
as portrayed in Figure 9, was also described by Ref. 2. However,  
Figure 9 clearly shows the effect of Pr. An oscillatory approach 
to steady state is seen for low values of Pr, whereas the Nu  
curve tends to the steady state in a smooth (and heavily damped) 
fashion for large values of Pr. 

In order to cross-check the large volumes of numerical data 
with other investigations, the steady state values of Nu  are 
listed in Table 1. These values are in close agreement with the 
available data from computat ional  results of Markatos  and 
Pericleous is and Mallinson and Davis. 19 Laborious efforts 
have been spent to delineate the effect of Pr  on the steady-state 
value of Nu. At high Prandtl  numbers, say Pr>~ 10, Nu  is found 
to be quite insensitive to the variations of Pr. This implies that 
the analytical models formulated under the infinite Prandtl  
number  can be effective for the realistic situations if Pr  >~ 10. On 
the other hand, for low Prandtl  numbers,  the dependence of 
Nu  on Pr is appreciable. 

C o n c l u s i o n s  

A comprehensive set of numerical solutions covering a wide 
range of parameter values for a square cavity has been obtained. 
When Pr_> 1, a distinct oscillatory behavior occurs if R a >  
Pr4A -4. The period of oscillation is comparable  to the period 
of an internal gravity wave. These findings are in support  of 
the predictions of Patterson and Imberger. When P r <  l,  an 
oscillatory approach to the steady state is detected only when 
Ra is sufficiently high to render a strongly boundary-layer-type 
flow. The change in the horizontal surface conditions from 
insulated walls to highly conducting walls appears to have an 
insignificant influence on the time histories. The general pattern 
of the evolution of the Nusselt number based on the numerical 
solutions, is consistent with the results of Patterson and 
Imberger. 
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